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Data-Driven Optimization Strategy of Microphone
Array Configurations in Vehicle Environments

Lehai Liu , Fengrong Bi , Jiewei Lin , Tongtong Qi , and Xin Li , Member, IEEE

Abstract— Microphone array (MA) speech enhancement is a
crucial component of vehicle intelligence. However, the complex
acoustic environments and the spatial constraints of array layouts
present challenges for the design and implementation of MAs
in intelligent vehicles. This study proposes a data-driven opti-
mization strategy for constructing the optimal MA configuration
in-vehicle environments. We first developed a novel in-vehicle
noise model that considers azimuth and elevation angles by
defining a search region for microphone elements in a plane.
Subsequently, based on the in-vehicle noise model, we conducted
sound field modeling to ensure the designed MA is compatible
with the complex acoustic environments inside vehicles. Utilizing
this sound field model, we formulated a specialized optimiza-
tion algorithm to devise the optimal configuration of the MA.
Finally, the designed array configuration was constructed using
an MEMS MA acquisition system, and the array perfor-
mance was evaluated in real driving environments. Compared
to conventional MA configurations, comprehensive experiments
indicate that the designed MA enhances performance by
increasing the short-time objective intelligibility (STOI) scores
by 13.9%, improving the output signal-to-noise ratio (SNR) levels
by 53.3%, and ensuring robustness in complex in-vehicle acoustic
environments.

Index Terms— Array configuration design, in-vehicle acoustic
environments, optimization strategy, planar microphone array
(MA), speech enhancement.

I. INTRODUCTION

AS VEHICLE intelligence advances, speech interaction
systems have become standard in modern cars, driv-

ing the evolution of vehicle intelligence. Speech interactive
systems minimize driver distractions compared to manual
controls, enhancing safety and driving enjoyment. However,
environmental noise during driving compromises speech signal
quality [1], impacting speech recognition accuracy and user
experience. Advanced signal-processing techniques are neces-
sary to capture and interpret speech commands correctly under
driving conditions.

Advanced microphone arrays (MAs) and signal-processing
algorithms are being integrated into modern vehicles to isolate
the driver’s speech from the surrounding noise. Beamforming,
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an essential MA signal-processing technique, enhances signal
clarity and recognition by selectively boosting desired signals
and reducing noise from other directions. This technique is
widely applied in fields like hearing aids [2], speech recogni-
tion [3], and mobile communications [4]. Furthermore, com-
pared to single-channel methods [5], [6], MA speech enhance-
ment is superior in spatial filtering [7], [8], [9], making it the
preferred choice for signal acquisition and speech enhance-
ment in vehicular environments [1], [10], [11], [12], [13], [14].
Numerous studies, highlighted in references [15], [16], [17],
[18], [19], [20], concentrate on optimizing the beamforming
algorithm. However, we find that the geometry, position,
and number of microphones significantly influence the sys-
tem’s performance. An optimal configuration can substantially
improve system efficiency, as demonstrated in references [21],
[22], [23]. Research on MA design has primarily focused on
optimizing conventional arrays [24], [25], [26], [27], [28], such
as linear and circular arrays. Nevertheless, irregular MAs out-
perform conventional arrays in broadband beamforming [29],
[30]. On the other hand, vehicle interior space constraints
limit the applicability of conventional configurations. In recent
years, researchers have explored various innovative array
configurations to achieve more effective signal acquisition,
including triangular arrays [31], [32], arrays aligned with the
direction of driving [33], and arrays designed along the con-
tours of internal vehicle components, such as dashboards and
speedometer panels [34]. However, the selection of these con-
figurations is primarily based on the experience of researchers,
and the suitability for the in-vehicle environment has yet to
be validated. Therefore, investigating irregular array configu-
rations in in-vehicle environments holds particular importance.

Recent research has made significant progress in optimizing
irregular MAs in simulated environments [30], [35], [36].
However, simulations typically assume that environmental
noise is uniform and controllable, while the acoustic envi-
ronment in vehicles is much more complex. In previous
research, MAs’ design or optimization process in vehic-
ular environments commonly relied on diffuse noise field
models to simulate the acoustic environments inside the
vehicle [1], [10], [11], [12], [13], [14]. However, the acous-
tic environments in the interior of a vehicle are notably
more complex. As documented in the study [37], a recent
investigation involving real noise data collection inside a
vehicle under normal driving conditions revealed significant
discrepancies between real in-vehicle noise fields and ideal
diffuse fields. These discrepancies indicate that using diffuse
field noise as a proxy for real in-vehicle noise is inaccurate.
This could significantly reduce the performance of MAs
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Fig. 1. Optimization strategy for MAs in the vehicle environment.

designed or optimized based on diffuse noise fields when
deployed in real vehicular environments. Thus, it is essential
to research the modeling of real sound fields in vehicular
environments.

In this study, we propose a data-driven optimization strategy
for MAs to build the optimal MA configuration in-vehicle
environments. The proposed optimization strategy for the MAs
incorporates actual signal collection experiments conducted in
vehicles rather than relying solely on mathematical or com-
putational models. Initially, we developed a novel in-vehicle
noise model based on sound field modeling, capable of pre-
cisely replicating the interior noise of a vehicle under usual
driving conditions. In addition to vehicle interior noise, this
study also accounts for interference from loudspeakers and the
co-driver. Subsequently, utilizing this model, we propose an
MA configuration update algorithm to design the optimal MA
configuration in a vehicle environment. Finally, the designed
array configuration was constructed using an MEMS MA
acquisition system, and the array performance was evaluated

in real driving environments. The flowchart for the opti-
mization strategy for MAs in-vehicle environments is shown
in Fig. 1.

The contribution of this article can be primarily summarized
into the following three aspects:

1) Collected real vehicle noise signals to model the sound
field in in-vehicle environments accurately.

2) A data-driven optimization strategy for MAs in-vehicle
environments was developed, focusing on performance
in real-vehicle conditions.

3) Designed and constructed arbitrary MA configurations
suitable for in-vehicle environments, considering spatial
limitations.

The rest of this article is structured as follows. Section II
introduces the signal model and the in-vehicle noise model
employed in this study. Section III introduces in-vehicle
sound field modeling. Section IV introduces the design
of MA configuration in vehicular environments. Section V
presents a comparative analysis of the simulation and
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experimental results for the designed MA against con-
ventional arrays. The article concludes with a summary
in Section VI.

II. IN-VEHICLE NOISE MODEL

In this section, we first introduce the signal model and
beamforming algorithm, which are the foundations for the
in-vehicle noise model. Subsequently, we will provide a
detailed description of the in-vehicle noise model.

A. Signal Model and Beamforming Method

Assume that C = [cl , . . . , cm, . . . , cM ] as an MA composed
of M elements, cm = ( xm, ym, zm ) represents the mth micro-
phone concerning the origin of coordinates.

1) Echoic Mixing Model: The criterion for classifying a
sound source as near-field is shown as follows:

|r | < 2L2
\ λ . (1)

In the given context, |r | represents the distance between the
sound source and the MA, L denotes the effective length of
the array, and λ signifies the wavelength. Given expression (I)
and considering the dimensions of the vehicle interior space,
the speech source is classified as a near-field source in this
study.

Consider a scenario involving a set of M microphones
designed to receive speech signals from sources Nn(t),
n ∈ {1, . . . , L}, to generate M distinct mixtures Sm(t),
m ∈ {1, . . . , M} and Nm(t), m ∈ {1, . . . , M} at discrete time
points represented by t .

Generally, the expression for the additive mixing model is
described by

Sm(t) =
N∑

n=1

Sn(t) ∗ hmn(t), m = 1, . . . , M. (2)

In this equation, the symbol ∗ represents linear convolution.
However, owing to reflections in the vehicle, multiple delayed
and attenuated signals originating from the same source signal
are captured by the microphone. Consequently, an echoic
mixing model was posited by

Sm(t) =
N∑

n=1

NP∑
p=1

amnp(t) · Sn
(
t − δmnp

)
, m = 1, . . . , M (3)

Nm(t) =
L∑

l=1

NP∑
p=1

amnp(t) · Nn
(
t − δmnp

)
, m = 1, . . . , M. (4)

In the given context, the symbol · denotes element-wise
multiplication, NP presents the number of distinct paths that
signals traverse from the sources to the microphones, and amnp
and δmnp denote the attenuation and delays introduced in the
Pth path, respectively.

The signal that the mth element of the array C received can
be described by

Xm(t) = Sm(t)+ Nm(t). (5)

2) Wideband Beamforming: The frequency spectrum of
speech signals predominantly lies in the 300–3400-Hz range,
indicating that the signal is wideband. The steering vectors of a
wideband signal exhibit correlation with frequency; therefore,
a frequency-domain model is employed in wideband signal
processing. This article utilizes the subband minimum variance
distortionless response (MVDR) beamforming method [38] to
enhance the input speech signals.

The directivity pattern or frequency response of an array C
composed of M elements is given by

D(k, s, C) =

M∑
m=1

Wm(k)Am(k, s, C). (6)

The vector s represents the position of the source relative to the
coordinate origin, s = (r, θ, ϕ), where r denotes the distance
between the source and the coordinate origin, θ is the elevation
angle, and ϕ is the azimuth angle. The symbol k signifies
frequency. The complex weights applied to the mth element
of the array are represented by Wm(k), Am(k, s, C) denotes
the frequency response of the mth element of the array about
the described source

Am(k, s, C) =
r

d(s, C)
exp{− jβ[d(s, C)− r ]} (7)

where β = 2πk \ c and c denotes the sound speed. d(s, C) is
the distance between the source and the mth element of the
array, according to

d(s, C) =
[
(r cos ϕ sin θ−xm)2

+ (r cos ϕ cos θ − ym)2

+ (r sin ϕ − zm)2] 1
2 (8)

where wk = [W1(k), . . . , WM(k)]T is the array weight vector,
(·)H denotes the Hermitian transpose, and aksC is the steering
vector that contains the M microphone responses of the
array C, aksC = [A1(k, s, C), . . . , AM(k, s, C)]T .

Array gain, the improvement in the signal-to-noise ratio
(SNR) between a reference sensor and the array output,
is expressed as G = Gd \ Gn , where Gd represents the gain
toward the desired signal and Gn corresponds to the average
gain toward all noise sources, contingent upon the characteris-
tics of the noise field. Assuming the target source is positioned
at a specific location, and there exists a finite number of noise
sources, each with equivalent power, interfering with the target
source, the array gain can be quantified according to

G(k, s0, C) =

∣∣D(k, s0, C)2
∣∣

1
N

∑N=1
n=1

∣∣D(k, sn, C)2
∣∣ =

∣∣wH
k · aks0C

∣∣2

wH
k ·Hc · wk

(9)

where sn represents the position of the nth noise source and
Hc is the noise cross-spectral matrix.

The fundamental principle of the MVDR approach is the
optimization of array gain, according to

b
min

a

{
wH

k ·Hc · wk
}

s.t. wH
k · aks0C = 1. (10)

The optimization problem is solved using Lagrange multi-
pliers, resulting in

wk =
H−1

c aks0C

aH
ks0CH−1

c aks0C
. (11)
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Finally, the array output Y (k, C) is expressed as the com-
bination of the weighted input channels, according to

Y (k, C) =
1
M

M∑
m=1

Wm(k)Xm(k, C) (12)

where Xm(k, C) is the discrete Fourier transform (DFT) of the
input signal received by the mth microphone of the array C.

B. Model Development

After determining the necessary signal model and beam-
forming technique, we will develop the in-vehicle noise model,
which is fundamental to the MA optimization strategy for
vehicles outlined in this study.

In the present study, we employ a room impulse response
generator (RIRG) to simulate the microphone echo responses
in the vehicular environment. We have utilized the simplified
image method proposed by Allen and Berkley [39] to compute
the acoustic impulse response between any two points in the
vehicle’s interior. The reflection coefficient in the simulation
environment was established at −1, signifying that the sound
signal would experience infinite reflections and attenuation in
the simulated space.

The in-vehicle noise model, presented in Step 1 of Fig. 1,
primarily consists of the vehicle interior space, microphone
search area, noise points, sound sources of the loudspeaker,
and the sound sources of the driver and co-driver. Drawing
upon the actual internal spatial dimensions in the test vehicle,
the proposed in-vehicle noise model simplifies the vehicle’s
internal space into a cuboid with dimensions of 2300 mm in
length, 2100 mm in width, and 1200 mm in height.

We assume that the internal car noise is generated by a
finite number of points located predominantly on the surface
areas of the vehicles, such as tires, windows, and engines.
Thus, noise collection points are strategically positioned in
these regions. The locational relationship between the noise
points and the inner space of the in-vehicle noise model is
shown in Fig. 2. In this depiction, black spheres represent noise
points on the front windshield, gray for the rear windshield,
blue for side windows, violet for near the wheels, and brown
for the engine section. The distribution of noise points is as
follows: 28 on the front windshield, 15 on the rear, 12 on each
side window, 1 at each wheel area, and 5 at the engine, totaling
100 points.

Moreover, the in-vehicle noise model also accounts for
disturbances from loudspeakers and the co-driver (passenger
in the front seat). The source direction and energy of the
co-driver speech, being proximate to that of the driver, consti-
tute a significant disturbance that should be considered. Fig. 2
also marks the locations of both the target and interfering
sound source points. The heights for the driver and passenger
speech sources are calibrated for an individual of 1.75 m. The
speech source is derived from the TIMIT database [40].
The green rectangle indicates the microphone search zone on
the central control panel, measuring 32 × 24 cm with a grid
resolution of 4 mm, offering 4800 potential microphone posi-
tions. We have precalculated the impulse responses between
each sound source and all potential microphone positions to
avoid repetitive calculations.

Fig. 2. Arrangement of noise points in the in-vehicle noise model.

III. IN-VEHICLE SOUND FIELD MODELING

This section is dedicated to developing a precise model
of the acoustic field inside a vehicle. Utilizing an MEMS
MA acquisition system, noise data from within the vehicle
are gathered at specific measurement points predetermined by
the in-vehicle noise model under actual driving conditions.
The noise data collected are then fed as input signals into
corresponding noise points in the in-vehicle noise model to
simulate the interior sound field.

A. Noise Data Collection Experiment

MEMS technology, known for its compactness, energy
efficiency, affordability, and integration ease, has been widely
adopted. Its MAs offer flexibility and configurability, fitting
well in confined spaces such as car interiors. The collection
of interior vehicle noise was performed using an MEMS
MA acquisition system. The MEMS MA acquisition sys-
tem employs an MEMS microphone, microphone baseplate,
driving board, and an open-source single-board computer,
as depicted in Step 2 of Fig. 1. The single-board computer
connects to the driving board via a 26-pin interface, while the
two driving boards are linked through a 28-pin flexible printed
circuit (FPC). The MEMS microphone is connected to the
driving board via a 5-pin FPC. This system supports the simul-
taneous acquisition of up to 16 channels. During operation,
signals from the MEMS microphone capture are transmitted
to the single-board computer through the driving board. The
single-board computer is then connected to another computer
via an Ethernet cable for system control and data storage.
The MEMS microphone used in this study is a digital model
with dimensions of 5 × 4 × 0.98 mm, a frequency response
range of 20 Hz–20 kHz, and a sensitivity of −38 ±3 dB.
The acquisition of audio signals is facilitated through an audio
interface card, which boasts a sampling rate of 48 kHz and a
resolution of 24 bits.

In the experiment, a commonly used family sedan was
selected as the test vehicle to ensure the relevance and appli-
cability of the findings to a wide range of consumer vehicles.
MEMS microphones were employed to collect acoustic noise
data in the vehicle. The precise placement of the microphones
was informed by the noise point configuration presented in the
in-vehicle noise model illustrated in Fig. 2. By this diagram,
an MEMS microphone was installed at each predetermined
noise point in the vehicle to ensure the accurate acquisition
of sound information from the specified locations. Due to
space constraints, only a selection of images depicting the
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Fig. 3. Arrangement of noise points in the vehicle. (a) Front windshield, (b) rear windshield, (c) side window, and (d) engine area.

arrangement of MEMS microphones in the vehicle measure-
ment areas is presented in this article, as shown in Fig. 3.
The red circles in the figure indicate the MEMS microphones
in the measurement area. The signal collection experiment is
conducted on a closed road test track, ensuring the vehicle
remains operational during data acquisition while maintaining
a 40 km/h speed.

B. Verification of Noise Field Consistency

By sequentially inputting the collected noise data into the
in-vehicle noise model according to the arrangement of noise
measurement points, we can accomplish the modeling of the
vehicle’s internal noise field. A measure to characterize the
noise environment is the complex coherence of a noise field,
represented by two signals xi and x j , at discrete time index t .
In the frequency domain, this coherence is defined as

0i j (k) =
φxi x j (k)√

φxi xi (k)φx j x j (k)

. (13)

Herein, k denotes the frequency and 0i j (k) represents the
coherence function between xi and x j at the frequency k.
The term φxi x j (k) refers to the cross-power spectral density,
indicating the mutual variations of xi and x j at frequency k,
φxi xi (k) and φx j x j (k), on the other hand, denote the auto-power
spectral densities of xi and x j , respectively.

To validate the accuracy of the noise field generated by the
in-vehicle noise model, a uniform linear MA composed of
eight microphones with a spacing of 35 mm was employed to
capture the interior noise of a car traveling at a constant speed
of 40 km/h. Fig. 4 illustrates the average spatial coherence
of the noise collected inside the vehicle, in conjunction with
the spatial coherence results of the noise field produced by
the model we proposed, evaluated at a microphone spacing
of 35 mm. To compare the performance of the proposed
model, Fig. 4 also displays the spatial coherence results of
an ideal diffuse noise field and the noise field generated by
the model developed by Ayllón et al. [37], each evaluated with
an identical microphone spacing of 35 mm.

The result reveals that, for frequencies below 1000 Hz,
the average spatial coherence of the noise measured in the
vehicle diminishes progressively; however, for frequencies
exceeding 1000 Hz, the spatial coherence of the interior noise
begins to ascend. The ideal diffuse noise field exhibits a
high correlation with the actual vehicular noise field at lower
frequencies, yet its correlation becomes significantly weaker
for frequencies above 1000 Hz. The noise field generated by
David’s model, although accounting for the correlation across

Fig. 4. Spatial coherence results.

frequencies below and above 1000 Hz, still demonstrates
considerable deviations on the whole and fails to represent
accurately the actual noise environment in the vehicle. In con-
trast, the noise field generated by the model introduced in
this article highly correlates with the actual vehicular noise
field in the low-frequency range. It maintains a commendable
correlation for frequencies above 1000 Hz. Consequently, the
noise field produced by the model proposed in this study
more closely approximates the actual noise environment in
the vehicle compared to other methods.

IV. IN-VEHICLE CONFIGURATION DESIGN OF MA
We have designed MA configurations for in-vehicle environ-

ments to leverage the sound field modeling-based in-vehicle
noise model. This study has 4800 installation positions for
microphones, yielding many possible array configurations.
Given the vast array of possibilities, we have implemented
heuristic optimization algorithms for an efficient solution.
To address the design challenges of MAs in vehicular envi-
ronments, we have developed an MA configuration update
algorithm based on an innovative optimization algorithm pro-
posed by Mohammed and Rashid [41].

A. Initialization Strategy
Initializing solutions is vital for the performance of heuristic

optimizations. Hence, we developed a novel initialization strat-
egy that uses conventional MA setups like uniform rectangular
array (URA), uniform circular array (UCA), and uniform
L-shaped array (ULsA), with added random variations to build
and evaluate a set of initial candidate MA solutions for the
in-vehicle acoustic field environment. The original population
combines solutions based on prior knowledge and random
solutions that may offer new potential solutions, ensuring the
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Fig. 5. Configuration of conventional MAs. (a) ULsA with seven
microphones, (b) UCA with eight microphones, and (c) URA with eight
microphones.

diversity and quality of the solutions. Each MA configuration,
varying from four to eight elements, is a possible solution.
We have set up a population of 50 candidate solutions to bal-
ance search performance and convergence speed. Due to space
limitations, this article only displays a selected conventional
setup in the measurement area, as shown in Fig. 5. Based
on the research by Grenier [42], we standardized the spacing
between elements in the array at 35 mm to accommodate the
frequency range of speech signals.

Each candidate in the population was assessed to ensure
compliance with three criteria: 1) MA elements must be
situated on predefined grid coordinates; 2) the minimum
interspacing between microphones must be at least 35 mm;
and 3) candidate solution positions must fall in the designated
search area; if a microphone’s position lies outside this area,
it is repositioned to the nearest boundary of the search zone.

The choice of an appropriate fitness function is crucial
in our algorithm application. We have selected short-time
objective intelligibility (STOI) [43], primarily used to evaluate
the quality of speech signals in noisy environments. The STOI
metric is quantified on a scale from 0 to 1, with higher
values indicating better speech intelligibility, making it ideal
for assessing the quality of speech signals captured by the
in-vehicle MA.

The initialization phase process is illustrated in Fig. 6. First,
the number of microphones M is determined, and then an
initial set of 50 candidate solutions, including conventional and
randomly generated arrays, each containing M microphones,
is automatically generated. Each candidate is represented as
a 2-D array containing the 2-D positional data of the MA,
with a data volume of 2M . All candidate solutions undergo
a dimensionality reduction to reduce the computational load,
transforming them into 1-D arrays of length 2M . Then, using
the in-vehicle noise model, the STOI for each MA group is
calculated, evaluating the performance of each candidate solu-
tion. The optimal microphone configuration Copt is determined
by comparing fitness values, and then the algorithm proceeds
to the optimization stage.

B. Optimization Strategy
The optimization process is divided into exploration and

exploitation to achieve optimal search performance and avoid
convergence to suboptimal solutions. Each phase has a 50 per-
cent probability, balancing discovering new solutions and
refining known ones. Fig. 7 illustrates the tailored process of
the exploration and exploitation phases.

During the exploration phase, the optimization target ran-
domly navigates in the solution space to uncover potential
superior solutions. At this stage, the array configuration C is
adjusted based on the optimal fitness value and the optimal

array configuration Copt from the previous iteration. In the
exploitation phase, the optimization target engages in direc-
tional movement in the solution space to pinpoint the optimal
solution, signifying a shift to a more meticulous search. In this
phase, the optimization target demonstrates two movement
patterns: if p exceeds 0.18, the target traverses a larger
distance in the solution space, leading to more significant
modifications in the array configuration C. Conversely, when
p falls below 0.18, the target covers a shorter distance in the
solution space, resulting in more subtle changes to the array
configuration C. In our experimental research, we observed
that updating the position of array C with a constant step
size may result in significant fluctuations or minor variations
in the fitness value, depending on the configuration of the
array. When the changes in fitness values are minimal, the
algorithm may waste considerable time on arrays with poor
fitness, thereby diminishing optimization efficiency. To address
this issue, we introduced a novel optimization target update
strategy in the optimization process to enhance the algorithm’s
search efficiency. We established two new parameters to
control the magnitude of the optimization target update: the
scaling factor α, which governs the magnitude of position
updates for array C, and the rate of change limit ξ , which
determines whether the rate of change in fitness values meets
the algorithm’s requirements. By appropriately setting α and ξ ,
it is possible to prevent the algorithm from expending exces-
sive time on arrays with poor fitness while ensuring that the
update magnitude is sufficient to maintain search precision.
The pseudocode for the proposed MA configuration update
algorithm is presented in Algorithm 1.

Algorithm 1 MA Configuration Update Algorithm
Input: Scaling factor: α; Change rate limit: ξ
Output: Array configuration: C

1 for i ← 0 to si ze − 1 do
2 (r, p)← random(0, 1), random(0, 1);
3 C[i] ← MACUA(C, r, p, i, α, ξ, 2);
4 end
5 Function MACUA(C, r , p, i , α, ξ , 2):
6 Dist ← Move_Distance(r, p, C[i], 2) αupdate ← α,

ξchange ← 0;
7 while ξchange < ξ do
8 C[i] ← 2+ Dist × (1+ αupdate);
9 f i t ← Vehicle_model(C[i]);

10 ξchange ← | f i t − Best f i t |/Best f i t ;
11 αupdate ← αupdate + α;
12 end
13 return C[i]
14 end
15 1Remarks: Move_Distance() is the displacement update

method used in Mohammed’s research [41],
Vehicle_model() is the performance evaluation method
for the MA proposed in this study, and 2 represents the
optimal array configuration from the last iteration.

After the exploitation or exploration phase, the algorithm
generates a new set of array configurations C. Subsequently,
this new set of candidate solutions is dimensionally esca-
lated into a 2-D array encapsulating microphone configuration
information. It autonomously adjusts its values according to
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TABLE I
STOI AND OUTPUT SNR OBTAINED BY THE DESIGNED ARRAYS, ULA, AND UCA

Fig. 6. Initialization process.

Fig. 7. Optimization process.

predefined constraints. Then, the candidate solutions undergo
dimensionality reduction, and their array configuration infor-
mation is sequentially fed to the in-vehicle noise model to
calculate the fitness value, aiming to find the optimal fitness
value and array configuration Copt for this iteration. In this
study, the number of iterations is set at 100. Finally, using
optimization, the optimal placement of the M components in
the MA C in a vehicular environment can be determined. The
subsequent section will conduct a comparative performance
analysis between the designed array and conventional MAs.

V. RESULTS AND ANALYSIS

In this section, we compare the speech enhancement per-
formance of the designed MA to that of the conventional MA
using STOI and the output SNR. For the SNR, the signal
refers to the speech signal emitted by the target speech source
(such as the driver or co-driver), while the noise pertains to the
background noise inside the vehicle. The analysis is divided
into two segments: the analysis of the simulation results and
the examination of the experimental results.

A. Simulation Results and Analysis
In this section, based on the in-vehicle noise model, we con-

ducted a comparative analysis of the speech enhancement
performance of designed MAs, ULA, and UCA in a vehicular
environment. The study encompassed configurations with four,

five, six, seven, and eight microphones. The speech signals
from the driver and the co-driver were emitted with equal
acoustic power levels, while the power level of the loudspeaker
source was set at 3 dB lower. The input SNR was maintained
at −15 dB and the sampling frequency was fixed at 8000 Hz.

While the co-driver speech was initially classified as an
interfering noise source during optimization, it concurrently
serves as an essential target sound source in the actual driving
conditions. Consequently, this section also analyzed the MA’s
performance, enhancing the co-driver’s speech. The perfor-
mance outcomes of the designed arrays, ULA, and UCA with
varying quantities of microphones are detailed in Table I. Here,
A represents the speech of the driver and B represents the
speech of the co-driver.

As Table I shows, the designed arrays, ULA, and UCA
with varying microphone quantities have different performance
outcomes. STOI and output SNR positively correlate with the
number of microphones M . Compared to ULA and UCA,
the designed arrays yield the best STOI and output SNR,
indicating superior performance. Taking the case with eight
microphones as an example, compared to ULA and UCA, the
designed MA increased the STOI scores by 27.9% and 13.9%,
respectively, and also improved the output SNR levels by
64.3% and 53.3%, respectively. The designed array and UCA
configurations outperform ULA due to their planar structure,
allowing for using both azimuth and elevation angles in steer-
ing vector estimation. In contrast, the ULA can only employ
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Fig. 8. Designed MAs. (a) Four-element, (b) five-element, (c) six-element, (d) seven-element, and (e) eight-element.

the azimuth angle for this purpose, resulting in less accurate
steering vector estimations and reduced speech enhancement
quality. Furthermore, the designed arrays are the product of
iterative refinements tailored to vehicular environments, which
accounts for their exemplary speech enhancement attributes.
Notably, the speech enhancement performance for the driver is
marginally superior to that of the co-driver when utilizing the
designed arrays. This discrepancy arises because optimizing
the MAs prioritizes the speech enhancement of the driver’s
speech.

The designed MA configuration derived from this research
is depicted in Fig. 8. It can be discerned that the designed array
arrangement adheres to specific transformation rules related to
the number of microphones, with each increment in the num-
ber of microphones resulting in an enhancement of the array
performance. Starting with a fundamental configuration of four
microphones, we have already observed the initial formation
of configuration characteristics, demonstrating that even the
simplest of arrays can be improved through our algorithm.
When the number of microphones was increased to five,
we designed a structure similar to a ULsA, which underscored
the pivotal role of the placement orientation of the MA in
augmenting performance. Further addition of microphones to
six revealed an acute-angled ULsA configuration, which bol-
stered the capability of directional capture of sound waves. The
configuration with seven microphones was further optimized
by merging two Minimum Redundancy Linear Arrays [44],
which maximized the array’s pick-up range and significantly
improved work efficiency in multisource environments. Ulti-
mately, the configuration with eight microphones, achieved
by adding an extra microphone between the endpoints of the
ULsA, formed a closed geometric structure. This configuration
further optimized the uniformity of the sound field coverage.
It validated the performance improvement brought about by
the increase in microphones, maintaining commendable per-
formance even in complex acoustic environments.

B. In-Vehicle Performance Testing

To validate the simulation results and assess the per-
formance of the MA in an actual vehicle environment,
we conducted signal acquisition experiments under actual
driving conditions. We evaluated the impact of changes in
the input SNR and source position on the MA performance
to verify its applicability under complex acoustic conditions
of driving environments. Notably, under the same operating
conditions, the error between the actual vehicle test results
and the simulation results was within 5%, which fully validates
the accuracy of the model. Subsequent sections will delve into
these essential points in detail.

Fig. 9. Arrangement of the experiment equipment in a vehicle.
(a) Eight-element uniform linear array, (b) eight-element uniform circular
array, (c) eight-element designed MA, and (d) artificial mouths.

1) In-Vehicle Data Collection Experiments: The vehicle
data collection experiment comprises two main components:
interior noise collection and speech acquisition. For noise
collection, an 8-element designed array, an 8-element ULA,
and an 8-element UCA are utilized to capture interior vehicle
noise at a speed of 40 km/h, as illustrated in Fig. 9(a)–(c),
respectively. In terms of speech acquisition, this study pro-
poses a novel method employing an artificial mouth to mimic
natural speech, avoiding the signal instability and safety risks
inherent in conventional in-vehicle speech acquisition tech-
niques that capture human voices while driving. The artificial
mouth, designed to emulate human vocal production, offers
a secure, manageable, and efficient way to produce steady,
reproducible signals crucial for audio device testing. The
setup comprises the artificial mouth, a power amplifier, and
a signal source, detailed in Step 4 of Fig. 1. The artificial
mouths are strategically positioned and secured at the locations
corresponding to the driver’s and co-driver’s mouths using
custom fixtures to emulate their speaking activities, as shown
in Fig. 9(d). The TIMIT corpus supplies the target and
interference sounds. The experiment is performed with the
engine turned off. The power of the signals from the driver
and co-driver is equal, while the power of the loudspeaker is
3 dB lower relative to the driver and co-driver signals. After
collection, the clean speech is synthesized with the noise to
simulate speech in a vehicular environment.

2) Impact of the Input SNR: Vehicular environments exhibit
variability in background noise and speech volume due to
speed, road conditions, and acoustics, leading to an uncertain
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Fig. 10. Results of the MAs under different input SNRs for M = 8. (a) Output
results of STOI. (b) Output results of the output SNR. (Blue: ULA driver
speech. Light blue: ULA co-driver speech. Green: UCA driver speech. Light
green: UCA co-driver speech. Red: Designed array driver speech. Light red:
Designed array co-driver speech.)

Fig. 11. Results of the MAs under different sound source positions for
M = 8. (a) Output results of STOI. (b) Output results of the output SNR.
(Blue: ULA driver speech. Green: UCA driver speech. Red: Designed array
driver speech.)

input SNR for MAs. Assessing the effect of input SNR
variations on array performance is crucial. Speech signals were
combined with noise at various SNRs (−15 to 0 dB) to create
noisy signals. The performance outcomes of the designed
array, ULA, and UCA at different input SNRs are depicted in
Fig. 10. The data reveal that the designed array outperforms
ULA and UCA in STOI and output SNR for both driver and
co-driver sources. On the other hand, While STOI and output
SNR generally rise with the input SNR, the increase slows
and nears a limit. Analysis of the enhanced signal processed
by the MAs reveals that arrays reduce uncorrelated noise
but slightly mitigate interfering speech. Although background
noise decreases, the output still contains some interference,
suggesting arrays partially counter interference. Nonetheless,
the designed array delivers substantial speech enhancement,
with STOI over 0.7 and output SNR above −2.3 dB even at
low input SNRs.

3) Impact of Source Position: The diversity of drivers
further compounds the complex acoustic environment in vehi-
cles. Driver height variations lead to vehicle source position
changes, affecting MA performance. Therefore, it is crucial
to investigate source position variability’s impact on MAs’
efficacy in vehicular environments. To study this, we simulated
source positions for drivers of different heights by adjusting
seat-to-wheel distances and artificial mouth heights, collecting
speech signals for drivers ranging from 150 to 190 cm. We
compared the performance of an 8-element designed array, an
8-element ULA, and an 8-element UCA at an input SNR of
−15 dB, as shown in Fig. 11. Results show that the designed
array consistently outperforms others in STOI and output SNR
across various source positions, with stable performance indi-
cating strong adaptability to source position changes, making
it suitable for complex vehicular environments.

VI. CONCLUSION AND OUTLOOK

The article presents a data-driven optimization approach
for MA design to address the challenges in vehicle interiors.
We developed an in-vehicle noise model to accurately simulate
the driving sound field, providing a foundation for design-
ing array configurations. Subsequently, we combined sound
field reconstruction with a tailored optimization algorithm to
achieve the optimal array configuration for vehicular envi-
ronments. Finally, we implemented and tested the designed
design using an MEMS system and an artificial mouth system,
demonstrating that the configuration meets spatial and acoustic
demands while maintaining high performance in complex
vehicle acoustics.

Future research should address the “cocktail party problem,”
a significant challenge in vehicular environments where mul-
tiple sound sources interfere with speech intelligibility. Our
forthcoming work will leverage the in-vehicle noise model
and experimental validation methods presented in this study
to tackle the challenges of speech separation in these contexts.
In addition, the sound field modeling method employed in this
study applies to various enclosed acoustic environments, such
as train carriages, aircraft cabins, and specialized vehicle inte-
riors, thereby contributing to research across multiple fields.
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